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3 Matematica, Università ‘‘Tor Vergata,’’ V.le Ricerca Scientifica, 00133 Roma, Italia; e-mail:

mastropi@axp.mat.uniroma2.it

Received July 11, 2001; accepted October 10, 2001

The probability of observing a large deviation (LD) in the number of particles
in a region L in a dilute quantum gas contained in a much larger region V is
shown to decay as exp[− |L| DF], where |L| is the volume of L and DF is the
change in the appropriate free energy density, the same as in classical systems.
However, in contrast with the classical case, where this formula holds at all
temperatures and chemical potentials our proof is restricted to rarefied gases,
both for the typical and observed density, at least for Bose or Fermi systems.
The case of Boltzmann statistics with a bounded repulsive potential can be
treated at all temperatures and densities. Fermions on a lattice in any dimen-
sion, or in the continuum in one dimension, can be treated at all densities and
temperatures if the interaction is small enough (depending on density and tem-
perature), provided one assumes periodic boundary conditions.

KEY WORDS: Large deviations; quantum statistics; ensembles equivalence.

1. INTRODUCTION

We study the probability distribution of the number of particles in a box L

for a quantum system in a region V ‡ L described by a grand-canonical
ensemble with reciprocal temperature b and chemical potential m. We
are primarily interested in the case where the volume of V is much larger
than that of L, |V|± |L|, i.e., in properties remaining valid in the ther-
modynamic limit VQ Rd with m, b fixed and |L|/|V|Q 0. The particles



interact with a pair potential v(x−y) so the Hamiltonian of the system is
given by

HV=C
i=1
(−12 Dxi −m)+C

i < j
v(xi−xj), xi ¥ V (1.1)

where the Laplace operator is considered with Dirichlet boundary condi-
tions on the walls of V, which we assume for simplicity to be a cube with
side length L (centered at the origin), or with periodic boundary conditions
in the Fermionic case at small v considered in Section 7. The analysis
in Sections 3–6 carries over to the cases of Neumann, periodic or mixed
boundary conditions and for most (reasonable) shapes of the containers V
and L. This does not imply that effects of the boundary conditions in
quantum systems are well understood: it just means that in Sections 3–6 we
do not consider values of m and T where phase transitions are possible. In
fact the cases considered in Section 7. make essential use of the periodicity
in the boundary conditions.

The potential v(x) is assumed to vanish for |x| > D and to be bounded,
smooth and stable. The particles will be assumed to obey either Boltzmann,
Bose or Fermi statistics. Hard core interactions can also be treated, leading
to results analogous to those of Sections 3–6 but the Fermionic cases in
Section 7 would require new ideas in the presence of hard cores. For
simplicity we do not consider this type of interaction here.

The number of particles in a region L which, again for the sake of
simplicity, we take to be a cube of side length a centered at the origin is
given by NL(x¯

)=; i qL(xi) where x
¯
=(x1,...) denotes a configuration of

particles in V and qL is the indicator function of the box L (qL(x)=1 if
x ¥ L and qL(x)=0 otherwise). The dimension of the space will be taken
d=3 but our analysis holds in any dimension. The probability of finding
exactly n particles in the box L is then given by

P(n)=
Tr dne−bHV

Tr e−bHV
(1.2)

where dn(x¯
)=1 if NL(x¯

)=n and 0 otherwise.
We note that formally the only difference in P(n) between quantum

and classical systems, is the nature of the probability distribution of con-
figurations x

¯
in V. For a classical system this is given by a Gibbs measure

while for a quantum system it has to be computed via the density matrix.
The pressure P, Helmholtz free energy f and expected density r at

temperature b−1 and chemical potential m are given as usual by

bP(b, m)= lim
LQ.

L−d log Tr e−bHV, bf(b, r)=inf
m
{bmr−bP(b, m)}

(1.3)
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We shall restrict our analysis to values of b, m where the above functions
are differentiable and the extremum is achieved at a single point m=
m(b, r) so that the expected particle density in V

r=
“

“m
P(b, m), m=

“

“r
f(b, r) (1.4)

We call the region in which this differentiability holds the ‘‘no phase tran-
sitions region.’’ This is a larger region than the region A(G) where the
functions P, r, f have been proved by Ginibre, see the review of ref. 1, to
be analytic in z=ebm: a disk in the z–plane with radius R(b) > 0 (an esti-
mate for R(b) is quoted later, see (3.4)). The region A(G) is also a region
where upper and lower bounds on the derivatives “P

“r ,
“f
“m can be established.

Let

DF(b, r, r0)=
def f(b, r)−f(b, r0)−

“f(b, r)
“r
:
r=r0

(r−r0)

=[f(b, r)−m(b, r0) r]−[f(b, r0)−m(b, r0) r0], (1.5)

DF is the difference between the Helmholtz free energy at density r and its
linear extrapolation from r0 (which is positive where (1.4) holds if r ] r0).
We shall prove that the probability of finding a density r in L, when the
expected density in V is r0, is given asymptotically by

P(n 4 rad) ’ e−b DF(b, r, r0) a
d

(1.6)

for large a, provided r−r0 is small enough. More mathematically this is
stated as follows.

Let b, m be fixed in the analyticity region A(G) and let r0 be the cor-
responding density (so that r0=r(b, m)). If the side a of the box L tends
to infinity and, correspondingly, the container side also tends to infinity so
that L/aQ. then

lim
aQ.

a
−d log C

r̃ ¥ [a, b]
P(r̃ad)= max

r̃ ¥ [a, b]
−b DF(b, r̃, r0) (1.7)

This holds for all statistics if the interval [a, b] is contained in an inter-
val [−d0(b, m), d0(b, m)] centered at r0 with d0(b, m) > 0 small enough
(estimated in (3.4)).

In Section 5 we obtain (1.7) by proving its finite a version (which con-
tains various finite size corrections). We then prove, in 6, a similar result
for Boltzmann Statistics with arbitrary (b, m), b > 0 assuming a bounded
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repulsive (i.e., positive) interaction v: this extends the validity of (1.6) far
beyond the analyticity region A(G). We can also treat Bose statistics in
a region somewhat larger than A(G) but still under the very restrictive
assumption that ebm+2bB < 1 where B is the stability constant of the inter-
action potential v, i.e., ;n

i < j=1 v(xi−xj) > −Bn for all (x1,..., xn). Our
method does not seem extendable to more general Bosonic systems in spite
of the strong results of Park, Section 5 of ref. 2.

A further extension in Section 7, using completely different techniques
(see ref. 3 for a review), deals with weakly interacting Fermi systems on
a lattice: given b, r0 the above theorem holds if the interaction potential
is small enough (depending on density and temperature) and if periodic
boundary conditions are assumed on the container V. The results can also be
extended to continuum systems in d=1. They hold for values of m, where
the method of Sections 2–6 fails.

The above restrictions always exclude the region in b, m where genuine
quantum phase transitions may occur (like superfluidity or superconducti-
vity). Substantial further work appears necessary to deal with this regime
despite the fact that the ideal Fermi and Bose gas (no interactions) can be
treated completely by other methods, see ref. 4.

2. THE GINIBRE REPRESENTATION

The key technical ingredient in our analysis is the Ginibre representa-
tion of the quantum partition functions. (1) We describe here only that part
of the formalism which we need to derive our results.

Let W=(x, w) be a Brownian path starting at x at t=0 and returning
to x at a later time b: this is a continuous function tQ w(t) ¥ Rd defined for
t ¥ [0, b]. The time length b will be fixed as b=b in the case of Boltzmann
statistics but it will take the values b=b, 2b, 3b,... in the case of Bose or
Fermi statistics.

Functions of W will be integrated with a measure dW which is defined
as dW=dx·Pxx(dw) in terms of the conditional Wiener measures Pbxy(dw)
(see ref. 1, p. 343);4

4 This is simply defined to be the measure on the paths starting at x and ending at y in a
time b formally given by Pbxy(dw)=

def Px(dw) d(w(b)−y) where Px(dw) is the usual Wiener
distribution.

F F(W) dW=def C
g

j=1

(−1) (j−1) s

j
F dx F P jbxx(dw) F(W) (2.1)
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where, see ref. 1, p. 361, the statistics are distinguished by the upper limit f
and the sign exponent s as

˛f=1 Boltzmann statistics
f=., s=0 Bose statistics
f=., s=+1 Fermi statistics

(2.2)

and the integration is over all x ¥ V and w(t) ¥ V for all t.
For Wk=(xk, wk) such that wk has time length jkb we imagine that wk

consists of jk strings, each of time length b with the i-th string denoted
by wk, i(t)=wk(ib+t), t ¥ [0, b]. We can consider each bit of string of
length b as a ‘‘particle’’ and the collection W

¯
=(W1,..., Wn) as ‘‘trajectory

configurations’’ or as ‘‘configurations of particles delocalized by quantum
indeterminacy’’ The ‘‘energy’’ of a configuration W

¯
is then defined as

U(W
¯
)=

1
2 b

C
(k, i) ] (kŒ, iŒ)

F
b

0
v(wk, i(t)−wkŒ, iŒ(t)) dt (2.3)

which is consistent with the intuitive delocalization interpretation above
in which the ‘‘number of particles’’ in the configuration W

¯
is simply

j1+·· ·+jn. It is convenient to introduce two notions of number of par-
ticles of W

¯
inside L as

NL(W
¯
)=C

(k, i)
qL(wk, i(0)), ÑL(W

¯
)=b−1 C

(k, i)
F

b

0
qL(wk, i(t)) dt (2.4)

and note that NL(W
¯
) is an integer while ÑL(W

¯
) is generally not, except that

ÑV(W
¯
)=NV(W

¯
) is always so.

The remarkable representation for the grand canonical partition func-
tion (due to Ginibre) is,

Z(b, m; V)=def Tr e−bHV=C
.

n=0
F
NV(W

¯
)=n
zne−bU(W

¯
) dW¯
n!

(2.5)

where W
¯
=(W1,..., Wn) and z=def ebm defines the activity. (2.5) makes the

quantum partition function look like the classical partition function of a
gas of closed contours of length roughly `b for all values of z in the
Boltzmann statistics and for ze2bB < 1 in the Bose and Fermi case; B is a
stability constant defined by U(x1,..., xn) \ −Bn, -n.

Remarkably, the quantum reduced density matrices also admit a
natural ‘‘classical’’ representation in terms of the above contours but we
shall not need such a representation here, see ref. 1.
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3. THE CLUSTER EXPANSION FOR RAREFIED GASES

One of the important consequences of the above classical representa-
tion of a quantum system is that it immediately allows us to take advantage
of the techniques developed to study Mayer and virial expansions of
classical gases. The basic remark is that it is ‘‘easy’’ to take the logarithm
of a classical partition function. By simple algebraic considerations the
logarithm is obtained as a formal power series in z and the difficult part is
to show the convergence of such an expansion.

The formal power series expression of the grand canonical pressure
bP(b, m), defined in (1.3) is obtained in the form:

log Z(b, m, V)=bP(b, m; V)=C
.

n=0
F
NV(W

¯
)=n
znFT(W

¯
)
dW

¯
n!
, (3.1)

The r.h.s. of (3.1) still looks like a partition function with FT(W
¯
) replacing

e−bU(W
¯
), see Eq. (4.15) in ref. 1. However, unlike the functions e−bU(W

¯
), the

functions FT(W
¯
) have the ‘‘cluster property’’ of ‘‘decay’’ at infinity, i.e., if

W
¯
=(W

¯
Œ, W

¯
œ) consists of trajectories W

¯
Œ=(W −

1,..., W
−

nŒ), W
¯
œ=(W'

1 ,...W
'

nœ)
with (W

¯
Œ, W

¯
œ)=def (W −

1,..., W
−

nŒ, W
'

1 ,...W
'

nœ), then

|FT(W
¯
−, W

¯
œ)|=0 if d(W

¯
−, W

¯
œ) > D (3.2)

where d(A, B) is the distance of two sets A, B and the trajectories are con-
sidered here as the union of the sets of points they occupy as time varies.
This is an elementary property that follows from the explicit expression for
the functions FT in terms of ‘‘Mayer graphs,’’ see Eq. (4.3) in ref. 1 (see
also ref. 5, Eq. (4.2) and (4.3) at p. 176, for a similar simpler case).

The functions FT(W
¯
) are like the functions e−bU(W

¯
) translation invariant

in the sense that they have the same value for W
¯

and for a translate of W
¯

as
long as the two contour configurations are inside V: this is a property that
will be used to guarantee the existence of the limit as LQ..

Furthermore trajectories that are long give a small contribution to
(3.1) at small fugacities because, see Eq. (4.39) in ref. 1,

F
N(G

¯
)=p
|dG

¯
| |FT(W

¯
, G

¯
)| < (2−1e−bw)q−1 R−(p+q−1) (3.3)

Here, q=N(W
¯
) and w is the maximum of v, |dG

¯
| means that we use the

Bosonic measure (which maximizes the integral) whether the system verifies
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Bose, Fermi or Boltzmann statistics, N(G
¯
) is the number of elementary

trajectories composing the configuration G
¯

and

R=R(b)=2−1e exp 5−bw−2bB−bl(b)−d ebBC F |v(x)| dx6 (3.4)

In (3.4) l(b)=`2pb is the ‘‘thermal length’’ and C=;.

j=1 2
−jj−d/2, see

ref. 1, Eq. (3.16) (here we made a special choice for the parameter t in
ref. 1, namely t=2−1e−bw). Since w <. hard cores cannot be considered.
The bound in (3.3) holds uniformly in V and it can be considerably improved
in the case of Boltzmann statistics, see ref. 1, Eq. (3.15).

Note the asymptotic values of R(b): R(.)=0 always and R(0)=0 if
d > 2 while R(0)=r0 > 0 if d [ 2.

We shall further need the following remark: suppose that the partition
function defined in (2.5) is altered by inserting a factor j(W

¯
) which has the

property of factoring:

j(W
¯
Œ, W

¯
œ)=j(W

¯
Œ) j(W

¯
œ) (3.5)

for all W
¯
Œ, W

¯
œ then (remarkably)

log Zf(b, m; V)=
def log C

.

n=0
F
NV(W

¯
)=n
znj(W

¯
)
dW

¯
n!
e−bU(W

¯
)

= C
.

n=0
F
NV(W

¯
)=n
znj(W

¯
) FT(W

¯
)
dW

¯
n!

(3.6)

Consequently if |z| maxW |j(W)| < R the series in (3.6) converges uni-
formly in the size L of the container and the sums in the r.h.s. of (3.1) and
(3.6) are therefore convergent representations of the logarithms of the par-
tition functions (2.5) and (3.6) that define them. The bound (3.3) goes back
to the theory of the Kirkwood–Salsburg equations and of the Mayer and
virial expansions, see refs. 1 and 6.

4. LAPLACE TRANSFORM OF THE PROBABILITY

Turning back to the large deviations problem it is natural to look for
properties of the Laplace transform (generating function) C(l) of the
probability distribution P(n), defined in (1.2)

C(l)=def C
.

n=0
eblnP(n)

Tr eblNLe−bHV

Tr e−bHV
(4.1)
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This admits again a simple Brownian path representation:

C(l)=
;.

n=0 >NV(W
¯
)=n znelbNL(W

¯
)e−bU(W

¯
) dW

¯n!

;.

n=0 >NV(W
¯
)=n z

ne−bU(W
¯
) dW

¯n!

(4.2)

Note that NL(W
¯
) defined in (2.4) appears here. The similar expression with

NL(W
¯
) replaced by ÑL(W

¯
) is a representation of the ratio:

Tr eblNL−bHV

Tr e−bHV
(4.3)

which is related to (4.1) as we shall see, but which is interesting in its own
right.

The theory of Sections 2 and 3 applies to the expressions (4.1), (4.3):
in fact, since the functions j(W

¯
)=elbNL(W

¯
) have the factorization property

(3.5), Eq. (4.1) can be written as

C(l)=exp 1 C
.

n=0
F

W
¯
5 L ]”
NV(W

¯
)=n

zn (elbNL(W
¯
)−1) FT(W

¯
)
dW

¯
n!
2 (4.4)

Let now z be less than R then (cf. (3.4)), if

|z| |ebl| < R or l < d(b, m)=b−1(log R−bm) (4.5)

the right side of (4.4) converges to a limit as VQ.. This limit of C(l) is
uniform in V. Clearly this is a key point that holds because of the bounds
(3.3) and (3.4). Furthermore the same convergence bound implies that the
argument of the exponential in (4.4) can be differentiated term by term
with respect to l still yielding convergent series.

Conclusion: the generating function (4.1) is analytic in l in a small
interval |l| < d(b, m) around 0. In fact one has analyticity in a bigger region
of l which contains the infinite real semi-axis l < d(b, m).

We define for each L, |L|=ld,

bPa(b, m; l)=a−d C
.

n=0
F

W
¯
5 L ]”
NV(W

¯
)=n

zn(elbNL(W
¯
)−1) FT(W

¯
)
dW

¯
n!

ra(b, m; l)=a−d C
.

n=0
F

W
¯
5 L ]”
NV(W

¯
)=n

zn elbNL(W
¯
)NL(W

¯
) FT(W

¯
)
dW

¯
n!

=“lPa(b, m; l)

(4.6)
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The convergence bounds in (3.3) and the translation invariance of the FT

functions then imply that the above expressions have limits as aQ.
provided that the size of the container V is also such that L/aQ.. (Indeed
the integrals over W

¯
in (4.6) can be written as the difference between

integrals over completely arbitrary configurations W
¯

except for the restric-
tion that they contain one point (e.g., x1) inside L and integrals over con-
figurations that intersect the boundary. The latter contribute a quantity of
o(ad) in the expression for P and o(1) in the expression for the density).5

5 In fact a closer analysis would reveal that such terms can be estimated to have size O(ad−1)
and O(a−1), i.e., that they are boundary terms, see ref. 1, proof of Lemma 2.2, p. 366.

The limits of bPl and rl are given by

b(P(b, m+l)−P(b, m))=C
.

n=0
F
g

N(W
¯
)=n
zn(elbn−1) FT(W

¯
)
dW

¯
n!

r(b, m+l)=C
.

n=1
F
g

N(W
¯
)=n
znelbnn FT(W

¯
)
dW

¯
n!

=“lP(b, m+l)

(4.7)

where the f over the integral means that the point x1=w1, 1(0) is not
integrated over; it can be fixed at the origin.

The approach to the limits is uniform in the parameters b, m in any
closed region contained in the analyticity domain A(G). One could also
evaluate the finite a corrections and show that if L/a \ 2 (say) then their
sizes are of order a−1 and in fact consist of two terms of respective orders
L−1 and a−1 (i.e., quantities of the order of ‘‘surface/volume’’ coming from
boundary effects due to the boundaries of V and of L respectively): how-
ever one would have to enter into the details of Ginibre’s work, so that we
just note that (3.3) and translation invariance imply that the corrections go
to zero as aQ..

5. LARGE DEVIATIONS IN THE ANALYTICITY REGION (4.5)

Given the above information, obtained from ref. 1, the derivation of
the large deviations results follows the standard path set up in the classical
theory of ref. 7.

For b and m=m0 we call, cf. (4.5), ra=ra(b, m0; 0) and denote the
grand canonical averages at chemical potential m by O ·Pm. We estimate the
probability P that NL > (ra+a) ad, for some small a > 0, by
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P(NL > (ra+a) ad) [ Oelb (NL−(ra+a) a
d)Pm0

=eb (Pa(b, m0; l)−Pa(b, m0; 0)−l (ra+a)) a
d

(5.1)

for all l \ 0. The limit of the coefficient of ad in the r.h.s. of (5.1) is, by
(4.7), b ((P(b, m0+l)−P(b, m0)−“mP(b, m0) l−la), which holds for all
l \ 0. Minimizing over l we get (by definition of free energy), that if a is
small enough P(NL > (ra+a) ad) [ e−ba2a d/2q++o(a

d) where q+ is the mini-
mum compressibility (i.e., of the second derivative of P with respect to m)
in the interval [m0−d, m0+d]. This is within the radius of convergence
of our expansion, provided the value l ’ a/q(0), where the minimum is
achieved, is such that |l| < d(m0, b), i.e., |a| < d0(b, m0)=

def
q+d(b, m0) so that

the above estimates on the Laplace transform hold.
The case a < 0 can be treated in a similar manner. Hence setting

|a| < d0(b, m) we get

(I) Large deviation property 1:

P(|NL−rad| > aad) [ e−ba2a d/2q++o(a
d) (5.2)

for a ¥ (0, d0(b, m0)).

The relation (5.2) gives an upper bound on arbitrarily large fluctua-
tions which, since the number of possible values of N between −aad and
aad is ‘‘only’’ 2aad and the total probability is 1 implies that inside any
density interval of size |a| [ d0(b, m0) centered at r0 there must be at least
one value of N whose probability is \ O(a−d). We write this result as

(II) Large deviation property 2:

P(NL ’
a

r0a
d) \ O(a−1a−d) (5.3)

where N ’
e

rad denotes the event |N−r0a
d| < ead.

This shows that the numbers ’ r0a
d have a ‘‘high probability,’’ and is

our second ‘‘large deviations’’ result.
We now consider a density value r0+a corresponding to a chemical

potential m0+la, with a ¥ (0, d0(m0, b)), and note that the same argument
can be applied to the probability distribution generated by replacing e−bHV

in (1.2) by e−blaNL/2e−bHVe−blaNL/2. Calling P̃(NL) this distribution we
therefore conclude that

P̃(NL ’
e (r0+a) ad) \ O(e−1a−d) eo(a

d) (5.4)
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Therefore, with the notation introduced after (5.3),

P(NL ’
e (r0+a) ad)

=
;NL ’

e (r0+a) a
d Tr e−bHVeblaNL

Tr e−bHVeblaNL
· e−lab(r0+a) a

d Tr e−bHVeblaNL

Tr e−bHV
eO(ea

d)

=P̃(NL ’
e (r0+a) ad) e−lab(r0+a) a

d Tr e−bHVeblaNL

Tr e−bHV
eO(ea

d) (5.5)

where we have multiplied and divided by Tr e−bHVeblaNL and introduced in
the first tern in the l.h.s. eblaNL compensating it by e−lab(r0+a) a

d
eO(a

d) which is
possible because of the restriction NL ’

e (r0+a) ad in the sum.
The first term is between 1 and O(e−1l−de−O(ea

d)) by (5.4) and the last
ratio can be written, again as done above and in the previous section, as

exp 1 C
.

n=0
F
N(W

¯
)=n
zN(W¯ ) (eblaNL(W

¯
)−1)

dW
¯
n!
2 (5.6)

where the integrals over W
¯

can be divided into regions with W
¯

entirely
outside the box L, which cancel because NL(W

¯
)=0̄, and into those partly

inside and partly outside, which contribute a quantity of o(ad),6 and those

6 Once more a closer analysis shows that such terms can be estimated to have size O(ad−1), i.e.,
that they are boundary terms.

entirely inside L, which by the analysis in Section 4 give adb(P(b, m0+la)
−P(b, m0))=o(ad).

Hence we see that

(III) Large deviations property 3:

P(NL ’
e (r0+a) ad)

=ea
d
b(−la(r0+a)+P(b, m0+la)−P(m0)) O(e−1a−deO(ea

d))

=e−ba
d(f(b, r0+a)−f(r0)−“rf(b, r0) a ) O(e−1a−deO(e a

d)) (5.7)

having used the relations bP(b, m0)=bm0r0−bf(b, r0) if m0=“r f(b, r0)
(see ref. 6, Eq. (4.17)).

The smoothness of the functions f, P has been tacitly used in the
above discussion. This allows us to take advantage of the arbitrariness of e

(which we could even choose to be an inverse power of a with a small
exponent) and to interchange limits and maximizations so that (5.7) implies
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the result stated in Section 1. Indeed we deduce that in the interval
[r0+a, r0+b] ad there is a value of N whose probability multiplied by
eDF( b, r0+a) a

d
is \ O(e(b−a) O(a

d)
a
−d) times the exponential in (5.7) and a, b are

arbitrary in (0, d0(b, m0)). This is the main result claimed in Section 1.

6. BEYOND THE ANALYTICITY REGION

A completely different method can be used to study systems satisfying
Boltzmann statistics at arbitrary chemical potential or Bose gases in the
region ebm+2bB < 1. The method does not apply to Fermi systems. We illus-
trate it in the bounded positive interaction case: more general cases can
presumably be treated along similar lines but we shall not attempt to do so
here.

The method is very similar to the one used in classical statistical
mechanics by refs. 8 and 9. This entails comparing C(l) in (4.1) with
the partition function Z(b, m+l; L) obtained by replacing HV in the
right side of (4.1) with HL. More precisely we want to prove that
|L|−1 log C(l)Q |L|−1 log Z(b, m+l; L)=P(b, m+l) which would give us
directly the desired result. For a classical system this is done by first noting
that C(l) is (for L−l > D) nothing else than > Z(b, m+l; L | g) dn(g).
Here g is the configuration of particles outside L, dn(g) is the induced
Gibbs measure and Z(b, m+l; L | g) is the partition function (or nor-
malization factor) for the grand canonical ensemble with chemical potential
m+l, in a box L with boundary conditions g. The proof of the LD formula
is then basically a version of the proof of equivalence of ensembles. (6)

To carry out a similar analysis for the quantum Boltzmann and Bose
case it is necessary to use trajectories W

¯
instead of configurations. One

simply considers probabilities of events happening in a fictitious gas of
closed paths: the probability of a configuration W

¯
=(W1,..., Wn) of this gas

is,

zne−bU(W
¯
) dW

¯
/Z(b, m, V) (6.1)

with the notation of the previous sections. We can now write W
¯
=

(W
¯

L, W
¯
ext) in which the contours in W

¯
L are totally or partially inside L and

those in W
¯
ext do not have any points inside L. Then the probability distribu-

tion in (6.1) induces conditional probabilities WL(W
¯

L |W
¯
ext) verifying the

appropriate ‘‘DLR equations’’

WL(W
¯
|W
¯
ext)=

znebU(W
¯
|W
¯
ext) dW

¯
/n!

Z̃(b, m; L |W
¯
ext)

(6.2)
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where Z̃ is the appropriate normalization. (Fermions cannot be treated in
this way because the integration dW

¯
is not positive).

The main estimate on which the analysis will rely is that, in analogy to
the classical case, the contribution to the partition function from trajec-
tories which cross “L is proportional to “L. More precisely there exists a
function J(b, z) such that

1
|“L|

log C
m

F
’

NV(W
¯
)=m, W1 5 “L ]”

zme−bU(W
¯
|W
¯
Œ)dW

¯
/m! < J(b, z) <. (6.3)

for all L ı V and for all configurations W
¯
Œ; the tilde over the integral means

that the contours in W
¯

must all intersect L. This is an estimate that can be
proved without restrictions in the case of a Boltzmann statistics; however in
the case of bosons it can only be proved under the condition ze2bB < 1; for
a proof see ref. 1 proof of Lemma 2.2, p. 366.7

7 In an unpublished note by Lupini and one of us, (GG), this region was slightly extended to
cover cases with ze2bB > 1 in systems with hard core interactions. This made use of the fact
that hard cores force the Brownian paths W to be ‘‘quite extended’’ (i.e., O(a) if a is the core
radius) while they have average size O(`b): therefore they have a low probability if b is
small. Hence one can take ze2bB > 1 (by O(ea

2/b) provided b is small enough. The analysis
could be extended to cover also such cases which, however, are conceptually not really
different from the case considered here.

The probability P(N) that NL(W
¯
)=N can be estimated by consid-

ering the probability of the same event conditioned on the presence of an
external configuration W

¯
ext: if the resulting estimate coincides with (1.6) up

to a correction by a factor eO(a
d−1) independently of W

¯
ext the proof of (1.7)

will be achieved.

(IV) Large deviation property 4. Suppose that the interaction potential
v is positive and bounded. Let b, m0 be in the region ebm0+2bB < 1 in the Bose
case or arbitrary in the Boltzmann case. We also assume that there is no
phase transition at b, m0. Let r0 be the corresponding density (so that
r0=r(b, m0)), i.e.,

“P(b, m)
“m , is continuous at m0. If the side a of the box L

tends to infinity and, correspondingly, the container side L also tends to
infinity so that L/aQ., then

lim
aQ.

a
−d log C

r̃ ¥ [a, b]
P(r̃ad)= max

r̃ ¥ [a, b]
−b DF(b, r̃, r0) (6.4)

This holds for the Bose system provided the interval [a, b] is contained in an
interval (0, rmax(b)) where rmax(b) is the maximal density that can be
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achieved as the chemical potential varies compatibly with the restriction
ebm0+2bB < 1. (There is no such restriction in the Boltzmann case).

The assumption of boundedness on the potential does not allow hard
cores. However the technique below also applies to the hard core case with
a tail which is not necessarily repulsive: to avoid technicalities we do not
discuss this case. Eliminating completely all restrictions, i.e., assuming just
stability or possibly superstability of the potential, seems to require new
ideas.

To prove (6.4) we fix the configuration W
¯
ext outside L and we look first

for a lower bound for P(n). This is obtained by remarking that if W
¯
… L

then for configurations W
¯

in which all trajectories are at least a distance D
from “L, |U(W

¯
|W
¯
ext)|=0.

Hence, if LD is the region in the interior of L separated from the
boundary of “L by a corridor of width D, the numerator of the frac-
tion (obtained from (6.2)) expressing P(n) can be bounded below by
(>W

¯
… LD, nL(W)=n e

bm0ne−U(W¯ ) dW
¯
/n!) which is ebm0n times the canonical partition

function QDn for the system with Dirichlet boundary conditions (i.e., vani-
shing boundary conditions) on “LD and no external particles outside the
box LD.

The denominator in (6.2) is bounded above by Z0L(m0, b) e
J(m0, b) |“L|

where Z0L is the grand canonical partition function for the system with
Dirichlet boundary conditions on “L and no external particles outside the
box L; the second factor bounds the contributions to the integral from the
contours of W

¯
that cross the boundary via the bound (6.3). Hence

PL(N) \
ebm0NQDN
Z0L(m0, b)

e−J(m0, b) |“L| (6.5)

Likewise Z0L gives a lower bound to the denominator of (6.2) while an
upper bound on the numerator is

1 C
N

k=0
F
NL(W

¯
)=N−k

ebm0(N−k) e−bU(W
¯
)2 eJ(b, m0) |“L| (6.6)

and again we recognize that the integral gives the canonical partition func-
tion for N−k particles in “L with Dirichlet (and no outside particles)
boundary condition multiplied by ebm0(N−k). Therefore

PL, N [ eJ |“L|N max
k [N

ebm0(N−k)QN−k(b)
Z0LD (b, m0)

=eJ |“L|N max
0 < d < r

e (bm0(r−d)−bf(b, r−d)) |L|

e (bm0r0 −bf(b, r0)) |L|
eo(|L|) (6.7)
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where we have used the fact that the canonical thermodynamic limit (with
Dirichlet boundary conditions) is uniform in the density in any closed
interval contained in (0, rcp), see ref. 6, and furthermore that the maxima
in (6.7) are certainly achieved, uniformly in the volume, for k > g|L| for
some g > 0.

In fact the maximum of the r.h.s. of (6.7) is achieved precisely at d=0
by the convexity properties of the free energy because

e (bm0(r−d)−bf(b, r−d)) |L|

e (b(m0r0 −bf(b, r0)) |L|
=e−b(f(b, r−d)−f(b, r0)−“rf(b, r0)(r−d−r0)) |L| (6.8)

Where we have used the relation between grand canonical pressure and
canonical free energy. We have assumed above that there are no phase
transitions in the sense that for each chemical potential considered there
is just one density possible. In particular this means that r=“P(b, m)

“m and
m=“f(b, r)

“r and therefore (6.7), (6.8) and (6.5) imply (6.4). Existence of phase
transitions affect the argument and the results in the same way as they do
in classical statistical mechanics and we do not discuss the details.

The above method is purely probabilistic and it relies on two proper-
ties: (1) the measure dW is positive and (2) inequality (6.3). Therefore it
applies also to the Bose gas case whenever (6.3) can be checked. The
inequality (6.3) does not hold if ze2bB > 1 so that new ideas seem necessary
to treat the Bose statistics case in spite of the important results of ref. 2
which, by relying on Ginibre’s representation of the Gibbs distributions,
provide a proof of boundary conditions independence.

7. BEYOND THE SMALL ACTIVITY REGION FOR WEAKLY

INTERACTING FERMIONS ON A LATTICE

In this section we discuss Fermionic lattice systems. Using the methods
developed for the study of ground states in Fermionic systems allows one
to deal with arbitrary m0 and b at small coupling, thus enlarging the region
in which LD relations can be obtained, at least if one assumes periodic
boundary conditions, i.e., regarding V as a torus. (This is certainly very
restrictive but we note that periodicity of boundary conditions is an
assumption under which most of the existing results on fermions have been
derived.)

Results can be obtained for all m0 (i.e., also positive m0 which is not
possible with the previous method). In the continuum case, however, similar
results can be derived only in one-dimension or if an ultraviolet cut-off is
imposed on kF. We shall fix a priori m0, b, with b > 0, and then discuss the
large deviations for v small enough (depending on the choice of b, m0).
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One can wonder how is it that the low temperature techniques that,
even for lattice systems, have been proved useful only in 1-dimensional
cases (meeting serious, so far insurmountable, difficulties in higher dimen-
sion) can be of help here in an arbitrary dimension. However the low tem-
perature techniques were devised to treat the case b=+., i.e., ground
states. We would encounter the same difficulties in their application to
large deviations theory if we tried to employ them for the purpose of
analyzing LD at zero temperature. Applying them at b−1 > 0 and at weak
interaction is, however, not difficult at least for lattice systems.

We consider a d-dimensional square box of even integer side L with
periodic boundary conditions, and xF=(n1,..., nd), with ni=−L/2,..., L/2.
The Hamiltonian is similar to (1.1) with the Laplace operator replaced by
the discrete Laplace operator. If there is no interaction all properties of the
system can be obtained through the free Schwinger function, also called
propagator,

g(x
¯
)=

1
b |V|

C
k0, kF

e ik0(x0+0
−)+ikFxF

−ik0+E(kF)−m0
(7.1)

where x0 ¥ (−b, b) and k0=
2p
b (m+

1
2), m=0, ±1,..., and ki=

2pni
L , ni=

0, ±1,..., ±L/2, kF=(k1, ..., kd), L being the length of the side of V and
E(kF)=;d

i=1 (1− cos ki). The symbol x0+0− means that the value is the
limit from the left.

The ‘‘propagator,’’ see for instance Section 2 in refs. 10 or 11, is
defined in terms of the creation and annihilation operators for fermions a ±x

¯and of the free Hamiltonian T=; −(12 Dx
¯ i
−m0)=>V a+x

¯
(−12 Dx

¯
−m0) a

−
x
¯
dx
¯as

g+(t
¯
, t)=Tr e−(b−t) Ta−x

¯
e−tTa+x

¯
Œ/Tr e−bT

g−(t
¯
, t)=Tr e−(b−t) Ta+x

¯
e−tTa−x

¯
Œ/Tr e−bT

(7.2)

if t
¯
=x
¯
−x
¯
Œ, t > 0, which are combined to form a single function:

g(t
¯
, t)=˛g+(t¯ , t) if b > t > 0

−g−(−t
¯
, −t) if −b < t [ 0

(7.3)

And (7.1) is a well known Fourier representation of the function in (7.3),
having replaced the temperature parameter t with x0 for uniformity of
notation. Note that the function g(x

¯
, t) has to be regarded as a function of

t which is defined and periodic, although not continuous, in [−b, b] (and
of x
¯

defined and periodic in [−L, L]d): this is important to keep in mind
when studying Fourier transforms.
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Note that ki [ 2p while k0 is unbounded : this unboundedness of the
sum is an ultraviolet problem ‘‘in the temperature direction’’ and restricting
to a lattice has the advantage that no ultraviolet problem is present in the
‘‘spatial direction.’’ The ultraviolet problem in the temperature direction is
somewhat trivial: it is however essential to have no cut-off in the k0 values.
Such cut–offs violate ‘‘reflection positivity,’’ i.e., the resulting system is no
longer Hamiltonian and the physical interpretation becomes unclear.

We define the ‘‘distance on the periodic box V’’ as dL(xi)=
L
p sin(pxiL )

anddb(x0)=
b
p sin(px0b )andd

¯ b, L(x¯
)=(dL(x1),..., dL(xd), db(x0)).Thisbecomes

the ordinary distance in the limit LQ..
In the following we shall sometimes write ;xF as > dxF.
For all positive integers a there exists a constant Ca, independent of

b, |V|, m0 such that

|g(x
¯
−y
¯
)| [ n−1

Ca

1+na |d
¯ b, L(x¯

−y
¯
)|a

(7.4)

where n−1=1+1/max{−m0, b−1}.
In fact let h(t) a C. function which is 1 for t > 2 and 0 for t < 1; we

can decompose the propagator g into its ultraviolet and infrared parts
gu, gi; we write

g(x
¯
−y
¯
) — gu(x¯

−y
¯
)+gi(x¯

−y
¯
)

=def
1

b |V|
C
k0, kF
h(k20)

e ik0(x0+0
−)+ikFxF

−ik0+E(kF)−m0

+
1

b |V|
C
k0, kF
(1−h(k20))

e ik0x0+ikFxF

−ik0+E(kF)−m0
(7.5)

and we estimate them separately.

(1) First we check that the bound (7.4) holds for gi(x¯
); if n0, n1,..., nd

are positive integers then

|(dL(x1)
n · · · dL(xi)nd db(x0)n0) · gi(x¯

)| [
1

b |V|
C
k0, kF
|“n1k1 · · ·“

n0
k0 ĝi(k¯

)| (7.6)

where “ki , “k0 denotes the discrete derivative on the lattice of the wave
numbers k. Noting that the denominator in (7.1) is greater than
max{−m0, b−1}, one obtains for gi(x¯

−y
¯
) the bound (7.4) because the sum

over k0 is finite and that over kF tends to an integral over the Brillouin zone
which is also finite.
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(2) The next relation that we need is that, for all a there is a constant
Ca such that

|gu(x¯
−y
¯
)| [

Ca

1+na |d
¯ b, L(x¯

−y
¯
)|a

(7.7)

The ‘‘only’’ problem in checking (7.7) is that the sum over k0 is unbounded
and the summand is O(k−10 ) so that the sum is improperly convergent
if n0=0: indeed using (7.6) we see that if |n0 | \ 1 the discrete derivative
is applied either to the denominator (and gives a quantity bounded by
O(k−20 )) or it is applied to (1−h(k20)), and “k0h(k

2
0) has compact support.

Therefore we have to check that the lack of convergence only causes a
discontinuity of the function gu at the origin and ±b and it does not affect
the large distance behavior. The non smoothness is just a discontinuity
hence it does not affect the size of gu at the origin. A direct check that
gu(x¯
) is bounded is obtained by rewriting gu as

1
bV

C
k
¯

h(k20)
e ik0x0+kF · xF(E(kF)−m0)

(−ik0+E(kF)−m0)(−ik0)
+dxF, 0F

1
b
C
k0

(h(k20)−1)
e ik0x0

−ik0

+
1
2

dx
¯
, 0−q(x0) dxF, 0F=

def ḡ(xF, x0)−q(x0) dxF, 0F (7.8)

where q(x0)=1 if x0 \ 0 and q(x0)=0 otherwise; furthermore dxF, yF denotes
the Kronecker delta on the lattice points and we use that (recall that
g, gu, gi are periodic, although not continuous, functions of x0 in [−b, b]).

b−1 C
k0=(m+12) 2p/b

e ik0(x0+0
−)

−ik0
=−
1
2

sign(x0)=
1
2
−q(x0). (7.9)

The function ḡ is defined by the r.h.s. of (7.8); the first two sums in (7.8)
are absolutely convergent (the second is a finite sum); hence gu is finite
near x0=0. Furthermore the Fourier transform ĝ̄(k

¯
) of ḡ is such that its

‘‘L1–norm’’ (bV)−1; k0, k¯
|ĝ̄(k
¯
)| is uniformly bounded in V because (if k0=

pb−1n with n integer)

|ĝ̄(k
¯
)| [
2d+|m0 |
k20

q(|k0 | > 1)+
q(|k0 | < 1)
2pb−1

+
b

2
dk0, 0

S (bV)−1 C
k0, k¯

|ĝ̄(k
¯
)| [ c (1+|m0 |) b (7.10)

848 Gallavotti et al.



for a suitable constant c. Note that instead the Fourier transform of g has a
logarithmically divergent L1-norm in the above sense because of the last
term in (7.8).

After the above remarks on the nature of the infrared and ultraviolet
propagators we can go back to the problem of interest to us here. We study
the Laplace transforms considered in 4, (4.3), and write

Tr e−b(HV −m0N)eblNL

=C
.

n=0

1
n!
(bl)n C

yF1

· · ·C
yFn

qL(yF1) · · ·qL(yFn) Tr[e−b(HV −m0N)r(yF1) · · ·r(yFn)]
(7.11)

where r(xF)=k+xF k−xF . Note that since the fermions are on a lattice and in a
finite container the series over n is a finite sum, by Pauli’s principle.

It is well known that the partition function trace for a Fermionic
Hamiltonian can be written in terms of Grassman’s variables g+x

¯
— g+xF, x0 ,

g−x
¯
=g−xF, x0 ; in particular, if H0 is the kinetic energy (with the discrete

Laplacian)

Tr[e−b(HV −m0N)r(yF1) · · ·r(yFn)]
Tr e−b(HV −m0N)

=
> P(dg) e−U(g)g+yF1, 0g

−
yF1, 0 · · ·g

+
yFn, 0g

−
yFn, 0

> P(dg) e−U(g)
(7.12)

whereU(g)=e > dx
¯
dy
¯
v(xF−yF) d(x0−y0) g+x

¯
g−x
¯

g+y
¯

g−y
¯

, > dx
¯
=;xF >b

0 dx0. The
‘‘integral’’ >P(dg) · is defined on monomials of Grassman variables (and
extended to general functions by linearity) by the anticommutative Wick
rule with propagator (7.1). Then we can write by (7.11), (7.12)

OelbNLPm0
=

> P(dg) e−U(g)eblNL(g)

> P(dg) e−U(g)
(7.13)

where NL(g)=;xF qL(xF) g+xF, 0g
−
xF, 0.

Remark. Had we considered instead of the ratio in (4.3) the quantity

Tr e−b(HV −m0N+lNL)

Tr e−b(HV −m0N)
=

> P(dg) e−U(g)elbN̂L(g)

> P(dg) e−U(g)
(7.14)

where N̂L=b−1 > dx0 ;xF qL(x) g+x
¯

g−x
¯

we would have obtained a different
quantity but estimates for it can be obtained in a way similar to the ones
we explain below: this is related to the discussion following (2.4).
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In terms of Grassmanian integrals the logarithm of the Laplace trans-
form of the probability (4.1) divided by b |L| is given by

1
b |L|

logOelbNLPm0
=
1

b |L|
log

> P(dg) e−U(g)eblNL

> P(dg) e−U(g)
(7.15)

For a system of fermions on a cubic d-dimensional lattice with Hamiltonian
(1.1), in which the Laplace operator is replaced by the discrete Laplace
operator, then we can proceed to developing a cluster expansion at small
interaction and proceed to studying the large deviations probabilities
following the same strategy of Sections 4 and 5 earlier.

In fact by the definition of truncated expectation

log F P(dg) e eA(g)ET(e eA)=def C
.

n=0

en

n!
ET(A; n) (7.16)

where ET(A; n)=ET(A1, A2,..., An)|Ai=A with E( · , · ,...) is a suitably defined
multilinear function of its n arguments, we can rewrite (7.15) as

1
b |L|

ET(e−U(elbNL−1)) (7.17)

having exploited that Grassmanian variables anticommute (so that even
monomials in Grassmanian fields commute, unlike the Fermionic fields that
generate them). More explicitly we develop the exponential in powers and
obtain

1
b |L|
5 C
.

n=0

1
n!

ET 1−U+F dx
¯

qL(xF) g+xF, 0g
−
xF, 0; n2−

1
n!

C
.

n=0
ET(−U; n)6

(7.18)

As usual one can represent the Grassmanian expressions

U(g)=F dx
¯
dy
¯
v(xF−yF) d(x0−y0) g+x

¯
g−x
¯

g+y
¯

g−y
¯

NL(g)=bl F qL(yF) d(y0) g+y
¯

g−y
¯
dy
¯

(7.19)

by the diagrams or ‘‘graph elements’’ in Fig. 1.
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Fig. 1. The lines ‘‘entering (exiting) a point’’ x
¯

represent the Grassmanian fields k+x
¯

(respec-
tively k−x

¯
); the wavy line connecting the dots marked x

¯
, x
¯
Œ represents v(xF−xFŒ) d(x0−x0Œ) while

the dot in the second diagram represents qL(xF) d(x0).

We can call the pair P=(x
¯
, x
¯
Œ) or the single point Q=x

¯
in Fig.1 a

cluster. If

dP=dx
¯
dx
¯
Œ, dQ=dx

¯
, V(P)=v(xF−xFŒ) d(x0−x −0),

qL(Q)=qL(xF) d(x0), g(P)=g+x
¯

g−x
¯

g+x
¯
Œg
−
x
¯
Œ, g(Q)=g+x

¯
g−x
¯

(7.20)

and if we set, as above, > dx
¯
·=def >b

0 dx
0 dxF ·=def >b

0 dx
0;xF · the (7.18) takes

the form

C
n1, n2
n2 \ 1

F 1D
n!

i=1
V(Pi) dPi 2 ·1D

n2

j=1
qL(Qj) dQj 2

·ET11D
n!

i=1
g(Pi)2 1D

n2

j=1
g(Qj)2 ; n1+n2 2 (7.21)

simply by the multilinearity of the truncated expectations, see refs. 11 and 12.
The sum over n2 starts from n2=1 because the terms with n2=0 cancel
because for l=0 (7.17) vanishes.

We now imagine to join or ‘‘contract’’ (‘‘Wick’s contraction’’) pairs of
lines associated with clusters (defined above) and with matching orienta-
tions in such a way that the collection of lines thus obtained, including
the wavy lines, form a tree graph connecting all points of the clusters. The
geometric object so built is called a ‘‘spanning tree’’ and contains 2(n1+n2−1)
solid lines and n1 wavy lines. In the graph there will be, therefore, 2m=def

4n1+2n2−2(n1+n2−1)=2(n1+1) lines left ‘‘uncontracted.’’
A remarkable algebraic expression for the truncated Fermionic expec-

tations ET in (7.21) can be developed (‘‘Lesniewsky’s expansion’’) as

C
T=spanning tree

F drT(t¯
) 1D

l ¥ T
g(tl)2 · (det GT(t

¯
)) (7.22)
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where:

(i) tl=x¯
−y
¯

if the line l ¥ T joins x
¯

and y
¯

,
(ii) t

¯
is a family of 2m ‘‘interpolation parameters in [0, 1],

(iii) rT(t¯
) dt
¯

is a probability measure on the interpolation parameters
whose structure is inessential but for the fact that > rT(t¯

) dt
¯
=1,

(iv) GT is a m×m matrix obtained by considering the m points
x
¯
˜ 1,..., x¯

˜m or y
¯
˜ 1,..., y

¯
˜m into which enter, respectively exit, uncontracted lines

and setting GTij=tij · g(x¯
˜ i−y
¯
˜ j) with tij functions of the interpolation param-

eters such that ti, iŒ=u¯ i
· u
¯ iŒ

for a suitably defined unit vectors u
¯ i

¥ Rm. The
latter property of the unit vectors is the only property that concerns us here.

The above formula is very convenient because of the Gramm–Hadamard
inequality8 which applies precisely to matrices that have the form of GT

8 This inequality concerns matrices having the form Mi, j=(ui · vj)H where ui, vj are unit
vectors in a Hilbert space H and (u · v)H denotes the scalar product in H and it states that
the determinant of M is bounded by 1 in absolute value. It has, essentially, the simple geo-
metric meaning that the volume of a parallelepiped with sides of length 1 cannot exceed 1.
An immediate consequence, that we employ here, is that matrices Mi, j=(ui · vj)H (Ui ·Vj)K
with ui, vj unit vectors in a Hilbert space H and Ui, Vj unit vectors in a Hilbert space K
also have determinant bounded by 1 (one just applies the previous inequality in the Hilbert
space H×K).

and bounds their determinant (for all t
¯
) in terms of the m-th power of the

L1-norm of the integrand in (7.1):

|det GT(t
¯
)| [ cm1 (7.23)

provided the norm is finite. However, as remarked in connection with (7.9),
(7.10) there is no cut-off on the momentum k0 and the norm diverges
(‘‘logarithmically’’). Here we hit a problem which is serious because
apparently the best estimate that we can find for this determinant using just
the boundedness of the matrix elements is like (7.23) but with an extra m!,
which would be a disaster.

Suppose, temporarily, that the propagator g(x
¯
−y
¯
) is replaced by

gi(x¯
−y
¯
) (i.e., we impose an ultraviolet cut-off to the model) so that the

inequality (7.23) holds: then we can quickly develop a proof of a LD result.
In fact, assuming (7.23) valid with some constant c1, we can bound the
n1, n2 term of the series (7.21) by

|l|n2

n1! n2!
1F dx¯

n

Ca

1+na |d
¯ b, L(x¯

)|a
2n1+n2 −1

·1C
xF
v(xF)2

n1
· cn1+11 n−1qL(yF1) d(y1) (7.24)
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if we do not perform the integral over the center y
¯
1 of the clusterQ1 which cer-

tainly exists because n2 \ 1: this expresses the cancellation in (7.18) between
the terms arising from the first truncated expectation when one considers only
the contributions from −U out of the 2n that are generated by expanding the
sums in the first expectation (i.e., the terms corresponding to n2=0).

We see that the difference (7.18) can be given the form

C
n1, n2 \ 0
n2 \ 1

ln2 FW(X, Y) qL(Y) dX dY (7.25)

where W(X, Y) is a translation invariant function expressible (as shown
implicitly above) as a sum of a large number of tree graphs connecting
the points in Y 2X with X=(x

¯ 1
,..., x
¯ n1
), Y=(y

¯
1,..., y
¯
n2 ). Furthermore if

one fixes the point y
¯
1 ¥ Y, say, the integral over the remaining points

X, Y (1)=Y/y
¯
1 is bounded, for a suitable choice of c2, by

F |W(X, y
¯
1, Y (1))| dX dY(1) [ en1 −1cn1+n22 (7.26)

having used Cayley’s tree–counting formula to take into account of the sum
over the spanning trees and having set e=;xF |v(xF)|. We shall show in Appen-
dix A that (7.26) holds as well without imposing an ultraviolet cut–off.

Hence we can write the difference in (7.18) with the notations of 4, see
(4.7), as

b(Pa(b, m0; l)−Pa(b, m0)=a−d C
n1, n2 \ 0
n2 \ 1

ln2 FW(X, Y) qL(Y) dX dY (7.27)

which has the same structural properties as the first of (4.7) and we can
therefore proceed in the same way as in 4, 5, with (7.26) playing the role of
(3.3), to derive for a system of fermions on a lattice:

(V) Large deviation property 5. Let b, m0 be fixed arbitrarily and let r0
be the corresponding density (so that r0=r(b, m0)). Suppose that the
;xF |v(xF)|=e is small enough, depending on b, m0. If the side a of the box L

tends to infinity and, correspondingly, the container side also tends to infinity
so that L/aQ. then

lim
aQ.

a
−d log C

r ¥ [a, b]
P(rad)= max

r ¥ [a, b]
−b DF(b, r, r0) (7.28)

This holds if the interval [a, b] is contained in an interval [−d0(b, m0),
d0(b, m0)] centered at r0 with d0(b, m0)=c

−1
2 n (d+2) > 0 small enough.
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We note that we can replace v(x
¯
) by |v(x

¯
)| in the bounds above: hence

repulsivity of the potential is not necessary and has not been mentioned in
the statement above. This reflects an essential difference between lattice
and continuum systems, see concluding remark (7).

To conclude the proof we refer to Appendix A where we prove (7.25).
The inequality (7.26) is studied in ref. 11: Section 3 of that reference is in
fact dedicated to a detailed analysis of the ultraviolet problem in a case
which is more involved than the present one. See Appendix A later.

8. CONCLUSIONS

(1) In the cases of Boltzmann statistics with arbitrary b, m0 or in the
case of Bose statistics with ze2bB < 1 the Ginibre representation allows us to
regard the quantum gas as a classical gas of contours, at least for the pur-
poses of computing the partition function or the probability distribution of
the number of particles in a given region. This is so because the integration
measure over the trajectories is with a positive definite measure dW. Hence
we can apply the arguments used in the general derivation of the large
deviations formulae from the theory of the equivalence of ensembles of
ref. 8 as done in the classical case in ref. 9. The applicability of such
methods found an early application in the work of Ginibre, see ref. 1,
p. 362. Naturally we called the results ‘‘weaker’’ because we did not get the
‘‘total’’ control on the free energy and the accurate treatment of the finite
size effects that (3.3) and (3.6) allow us to derive, but the extra generality is
nevertheless remarkable.

(2) The above analysis admits a straightforward extension to electron–
phonon systems because of the remarks in ref. 13, see also ref. 1, p. 420.

(3) We have also implicitly obtained that the asymptotic behavior of
(4.3) (when aQ., LQ. and L/aQ.) is the same to leading order as
that of the r.h.s. of (4.1), in the analyticity regions considered.

(4) The results for Fermi systems, aside from being restricted to
lattice systems, considered in Section 7 cover in the fernionic case a rather
different region of the (b, m0)–plane, compared to the ones derived in
Section 4. They are valid at any fixed b, r (or at any b, m0) provided the
coupling is small enough. Thus Section 7 provides a stronger connection
with the results for free fermions in ref. 4 which are implied by our results
in the interval of density (−d(b, m0), d(b, m0)) in which the latter hold.

(5) It may seem that the obstacle to deriving a LD relation in the
case of the Bose or Fermi statistics and in the region where genuinely
quantum phase transitions can occur is related to the problem of showing
boundary condition independence of the main extensive thermodynamic
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quantities. However this problem has been solved in many cases: in some
cases, indeed, the technical estimates of its solution imply, see ref. 14 and
ref. 1, p. 365, our equations (3.4) and (6.3), which have been the basis of
our results in the first six sections of this paper; but in other cases, and we
think of the paper of ref. 2, boundary conditions independence can be
proved for very general interactions (e.g., bosons with just superstable, if
d < 4, or superstable and repulsive interactions, if d \ 4): but the result
does not imply (6.3) and therefore it seems that LD needs more than just
boundary condition independence. Perhaps (6.3) has to be replaced by
estimates that involve all particles coherently, as in ref. 2, rather than single
ones as it is essentially the case in the proofs of (6.3) (which depend on the
finite size of the individual closed brownian paths).

(6) The results in Section 7 are valid for small interactions: how
small depends on b and m0. The only case in which a similar result can
be found for a continuum system is the d=1 case. If we consider a
1–dimensional continuum system we can proceed in the same way after
replacing sums over xF with integrals and using that the kinetic energy
grows quadratically at . so that the integral replacing the sum in (7.4) is
still convergent: this is peculiar to d=1 so that the result does not extend
to higher dimension unlike the lattice case. Of course if an ultraviolet
cut–off is imposed on kF the above analysis carries over to higher dimen-
sion: since ultraviolet cut–offs on the spatial momenta kF preserve reflection
positivity the result has some interest because it expresses properties of
systems which are still Hamiltonian in spite of a ‘‘strange’’ form of the
kinetic energy for large kF 2.

(7) The key bound (7.26) has been rederived here (see Appendix) but
it is implicit in the analysis in ref. 11, Section 3, where the more complex
problem of the ultraviolet stability in one dimensional Fermionic systems
has been treated in detail. We have not simply referred to ref. 11 for the
sake of completeness (the result is somewhat hidden there as the concern
was about different topics). It would be interesting to prove that the
inequality (7.23) holds in spite of the fact that the L1 norm of the Fourier
transform of g is infinite; or, alternatively, to show that it does not hold
so that the proof that we reproduce in Appendix A for (7.25), (7.26),
independent of the validity of the bound (7.23), is in a sense optimal.

APPENDIX A: PROOF OF (7.25), (7.26)

We shall represent the Grassmanian fields g in (7.13) as ḡ ±+k ± where
ḡ has propagator ḡ(x

¯
−y
¯
) as defined in (7.8) while k has propagator, see

(7.8), −q(x0) dxF, 0F .
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The Grassmanian integrals in (7.13) will be written as double integrals:
for instance the numerator in (7.13) will be written

F P(dḡ) F P(dk) e−U(ḡ+k)+blNL(ḡ+k) (A.1)

The difference with the corresponding treatment in ref. 11 is that we use
the simplicity of the propagator of k to perform explicitly the integration
over k. The integration over k in (A.1) can be performed via the formula
(7.16) and we replace (7.17) by

1
b |L|

[ETḡ (E
T
k(e

−U(ḡ+k)+blNL(ḡ+k)))−ETḡ (E
T
k(e

−U(ḡ+k)))] (A.2)

The evaluation of ETk(e
−U(ḡ+k)+blNL(ḡ+k)) is similar to that of ET(e−U(g)+blNL(g))

in (7.18) through (7.19) earlier. The ETk will be a function expressed as a
sum of Grassmanian monomials in the fields ḡ: each such monomial will
arise as a ‘‘value’’ of a suitable graph according to a (classical) procedure
that we proceed to describe.

Since U and NL depend upon ḡ+k we develop the monomials in U
and NL obtaining a sum of 20 monomials in k with coefficients that depend
on ḡ (16 from U and 4 from NL): each of such terms can be represented
graphically by a graph like those in Fig. 1 in 7 in which one or more of the
solid lines is replaced by a dashed line (hence we get 16 different graphs
from the first and 4 different ones from the second): the dashed lines
represent the Grassmanian fields k while the solid lines represent the
fields ḡ.

For instance a graph with 3 solid lines and one dashed line will repre-
sent ḡ+x ḡ−x ḡ+xŒk

−
xŒ if in Fig. 1 above a dashed line has replaced the solid line

entering xŒ.
Keeping the notation introduced in 7 we can say that while in the

approach attempted in Section 7 we had just two types of clusters (denoted
P or Q) we now have 20 different types of clusters symbolically represented
by ‘‘graphs elements’’ like those in Fig. 1 but with one or more solid lines
replaced by dashed ones. The different types of graphs elements will be
labeled with a label j=1, 2,..., 16, 17,..., 20: the last 4 will be the ones
generated by the second graph element in Fig. 1 (i.e., by the graph element
with two lines only).

The truncated expectation ETk is computed according to the usual rules:
namely we must form all possible graphs c with n=;20

j=1 nj clusters, of
which nj are of type j, in which the dashed lines are pairwise contracted

856 Gallavotti et al.



or ‘‘paired’’ to form oriented dashed lines connecting nodes of graph ele-
ments so that no dashed line is left out ‘‘unpaired’’ and the graph obtained is
a connected graph c. The wavy lines present in the first 16 graph elements
must taken into account in checking whether or not a graph is connected.

The ‘‘value’’ of a graph will be a monomial in the Grassmanian
variables ḡ rather than just a number as it was the case in 7.

Consider a graph c formed from nj clusters Pj, i, i=1,..., nj, of type
j=1,..., 16 or Qj, i, i=1,..., nj of type j=17,..., with a total of 2ndash of
dashed lines. Then c will represent a monomial in the fields ḡ that we
denote pc(PQ) and which is the product of the fields ḡ associated with the
solid lines (all of which remain ‘‘unpaired’’ because pairing only concerns
the dashed lines, i.e., the fields k) of the clusters.

Since the propagator of a pair of fields k−x , k
+
xŒ is −dxF−xFŒq(x0−x

−

0) a
factor (−1)ndash has to be added together with all the Kronecker deltas and all
the q( · − · ) functions expressing that the various x0−x

−

0 differences must
have a definite sign.

We call D(c) the value of the product of such quantities: it has value
0, ±1 and we denote Pj, Qj the collection of the nodes of the clusters Pj, i or
Qj, i respectively. In conclusion the value of the graph c can be written as

F 1D
16

j=1

1D
nj

i=1
V(Pj, i)2

dPj
nj!
2 ·1 D

20

j=17

1D
nj

i=1
lqL(Qj, i)2

dQj
nj!
2 pc(PQ) D(c)

(A.3)

The key remark is that the graph c cannot contain any closed loop other
than the ones formed by contracting lines that exit from the same graph
element (giving rise to what are usually called ‘‘tadpoles’’) because the q

functions in the propagator of k force the x0’s of the various nodes of the 20
graph types to be in increasing order in the direction of the arrows drawn on
the dashed lines that are contracted.

Note in fact that only the graph elements corresponding to the first 16
types contain fields computed at exactly equal times (a necessary condition
for the possibility of loops).

Therefore the number of graphs c which are all trees is not bigger
than (;20

j=1 nj)! and we can use (;20
j=1 nj)!/<j nj! < 20;j nj in estimating the

number of different monomials that we can get in the construction. The
number of graphs which are not trees because of tadpoles is not much
bigger (being bounded by 6nn!).

In this way we express ETk(e
−U(ḡ+k)+blNL(ḡ+k))=log Ek(e−U(ḡ+k)+blNL(ḡ+k))

as a sum of monomials in the fields that we can ‘‘clusters ’’ and which can
be represented graphically in a way similar to the one used in Fig. 1,
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Fig. 2. Illustration of a contribution to ETk in (A.2) from a cluster generated by collecting all
graphs c which have 6 external lines and contain p graph elements of type > 16 with nodes at
z
¯ 1
,..., z
¯ p

. These are graphs that contribute with a monomial of the form ḡ+x
¯ 1

ḡ+x
¯ 3

ḡ+x
¯ 5

ḡ−x
¯ 2

ḡ−x
¯ 4

ḡ−x
¯ 6

.

Section 7, to represent the monomials in −U(g)+blNL(g); namely as in
the following Fig. 2 and analytically as

lp F V(x
¯ 1
,..., x
¯ n
, x
¯
−

1,..., x¯
−

n, z¯ 1
,..., z
¯ p
) 1D

p

i=1
qL(z¯ i

)2

· ḡx
¯ 1
...ḡx

¯ n
...ḡx

¯
Œ1
...ḡx

¯
Œn
1D
n

i=1
dx
¯ i
2 1D

p

i=1
dz
¯ i
2 (A.4)

The V function is obtained by collecting and summing contributions
from graphs c which lead to a monomial of the degree 2n in the ḡ fields and
contain p graph elements with only two lines. Such contributions will
admit, if p \ 1, the bound

F |V(x
¯ 1
,..., x
¯ n
, x
¯
−

1,..., x¯
−

n, z¯ 1
,..., z
¯ p
)| dx
¯
dx
¯
Œ dz
¯ 2
· · · dz
¯ p
< cn+p2 (A.5)

Note that the kernel V may contain some delta functions (or Kronecker
deltas) as it happens already in the corresponding representation for −U
and lbNL described after (7.12).

We do not discuss further details because the technique has been used
many times in the literature and in particular in ref. 11. The validity of the
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bound in (A.5) is an immediate consequence of the fact that all the graphs
that contribute to V are connected. This means that in the graph value one
can associate a factor v(xF−xFŒ) dx0 −xŒ0 to each wavy line that connects x

¯
and

x
¯
Œ or a factor dxF, xF Œ (while no decay is present in the x0−x

−

0) if the points are
linked by a dashed line. The lack of decay in the x0 variables is not a
problem because the x0’s vary in a finite interval [0, b]. The combinatorics
requires some care and the analysis is based on the remark following (A.4)
and is also discussed in ref. 11, for instance.

We can now proceed to the integrations over the ḡ fields.
The procedure is the same as the one above. A minor difference is that

we have now infinitely many graph elements: namely all the ones of the
form illustrated in Fig.1 and in (A.4). This is not really a big difference
because we have the bound (A.5) which will allow us to control the
proliferation of graph elements.
This time we can get, however, graphs with loops and we cannot control

their number unless we are willing to obtain bounds that grow factorially
with the size of the graph. To avoid the appearance of factorials we must
collect many graphs together; or we must compute the expectations by using
Lesniewsky’s formula to avoid getting combinatorially large contribution.

The idea is that this time the propagator ḡ of the fields ḡ, that we have
to integrate, has a finite L1 norm, as pointed out in the comment to (7.10), so
that we can apply the formula (7.23).

Furthermore the second truncated expectation appearing in (A.2) will
not contain any term with p > 0 (of course), but it will otherwise coincide
with the expression of the first expectation. So that the difference of the
two will be given simply by the sum of the terms with p > 0. And combin-
ing (A.4) with (7.23) one gets an expression like (7.25) and the bound (7.26)
with the symbols x

¯ 1
,... and z

¯ 1
,... taking the place of the X and Y respec-

tively.
Logically we avoided proving the estimate (7.23) for the full g integra-

tion, and we still do not know whether such an estimate is really valid. This
has been done by performing exactly the (relatively) simple integral over
the component k of the Grassmanian field g=ḡ+k which is responsible
for the summability problem described in the comments to (7.23). In this
way it becomes clear that the logarithmic divergence of the L1 norm of the
Fourier transform of the propagator cannot really cause problems in the
estimates that we need for the purposes of proving (7.26) and the LD
relation 5 of 7.

It is worth stressing that the problem that we studied in this appendix
(originally solved in ref. 11) is usually considered ‘‘irrelevant’’ in most of
the literature: in condensed matter Physics it is very common to find that
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the infrared problems are directly attacked by assuming that the propagator
contains an ultraviolet cut–off both on the kF and the k0 components.9 This is

9 In the present context this means taking as propagator the gi in (7.5) which of course allows
to derive the (7.23) with no effort and save the analysis of this appendix.

done even in works in which the authors are aware that a cut–off on k0 is
very difficult to interpret because it breaks the reflection positivity of the
theory, i.e., makes it ‘‘non Hamiltonian’’.
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